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We present an in-depth analysis of the geometrical percolation behavior in the continuum of random assem-
blies of hard oblate ellipsoids of revolution. Simulations were carried out by considering a broad range of
aspect ratios, from spheres up to aspect-ratio-100 platelike objects, and with various limiting two-particle
interaction distances, from 0.05 times the major axis up to 4.0 times the major axis. We confirm the widely
reported trend of a consistent lowering of the hard particle critical volume fraction with increase of the aspect
ratio. Moreover, by assimilating the limiting interaction distance to a shell of constant thickness surrounding
the ellipsoids, we propose a simple relation based on the total excluded volume of these objects which allows
us to estimate the critical concentration from a quantity that is quasi-invariant over a large spectrum of limiting
interaction distances. Excluded volume and volume quantities are derived explicitly.
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I. INTRODUCTION

A central problem in materials science is the precise
evaluation of the percolation threshold of random particle
dispersions embedded in a continuous medium. This occurs
typically in composite materials and is of importance for the
prediction of relevant properties such as the electrical con-
duction in insulator-conductor composites. Practical ex-
amples include carbonaceous fillers like carbon fibers, graph-
ite, carbon black, carbon nanotubes, and fullerenes, but also
metallic and ceramic ones, while matrices can be, for in-
stance, polymeric, metallic, or ceramic. Although the most
studied particle form is the sphere �see, e.g., �1–6��, a broad
range of fillers in real composites have forms which deviate
consistently from the sphere. Previous investigations have
considered different particle shapes like, e.g., sticks �7–11�,
wavy sticks �12�, plates �13–15�, or ellipsoids �16–20�, in the
fully penetrable case, where the particles are allowed to
freely overlap. Only a few works have dealt with nonspheri-
cal hard objects surrounded with a soft shell, like hard sticks
�4,21–23� or triaxial polydisperse ellipsoids �24�, while a re-
cent paper �25� contemplated, as in the present study, the
case of hard ellipsoids of revolution, but in the prolate do-
main.

The widespread use of composites containing fibrous fill-
ers has made the stick, or other elongated object, the favorite
nonspherical shape in many studies. Nevertheless, some
other fillers, notably graphite, have shapes that are better
assimilable to flattened ellipsoids or platelets, and over a
broad range of aspect ratios, i.e., ratios of longer to shorter
dimension. Therefore, the exploration of the relatively un-
charted terrain of the percolative properties of oblate objects
as a function of their aspect ratio is the aim of the present
study.

In this paper we consider the special case of oblate ellip-
soids of revolution, usually called �oblate� spheroids, which
are ellipsoids with two equal �major� axes and may be ob-

tained by rotation of a two-dimensional �2D� ellipse around
its minor axis. The reasons for this choice are twofold: first,
spheroids are characterized by a smaller number of param-
eters �seven, against nine of the general ellipsoid�; second,
experimental measurement techniques of the filler particle
size distributions are generally able to extract only major and
minor dimensions, making it difficult to quantitatively define
a size distribution for the third axis.

Our model is defined by a dispersion of impenetrable
spheroids of identical dimensions with isotropic distribution
of the symmetry axis orientation. Given any two spheroids, a
connectivity criterion is introduced by allowing an upper cut-
off distance beyond which the two spheroids are considered
disconnected. More precisely, each spheroid is coated with a
penetrable shell of constant thickness, and two particles are
connected if their shells overlap. In a system of conducting
spheroids dispersed in an insulating continuum host, the shell
thickness can be physically interpreted as a typical tunneling
length between the particles, governing the electrical connec-
tivity of the composite. Note that the inclusion of a constant
thickness shell leads to a shape of the total object which is no
longer that of a spheroid. On the other side, a penetrable
shell consisting of an enlarged spheroid, as studied in �25�
for the case of prolate ellipsoids, implies increasingly non-
uniform shell thicknesses as the aspect ratio gets higher.

To carry out our investigation we exploit a simulation
algorithm, described in the following section, that allows us
to determine the percolation behavior of a random distribu-
tion of impenetrable spheroids as a function of their volume
fraction, aspect ratio, shell thickness, and simulation cell
size.

II. THE SIMULATION ALGORITHM

To build an algorithm which allows us to numerically
investigate the percolative properties of the proposed system,
we first need a routine that generates a random distribution
of nonoverlapping ellipsoids �spheroids� and that calculates
their interdistance �meant as the minimal distance between
two ellipsoid surfaces�. For this purpose we may require two*gianluca.ambrosetti@epfl.ch
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functions, an ellipsoid overlap criterion and the distance be-
tween two ellipsoids, the first being needed of course only if
it can be computed in a time consistently shorter than the
second. Neither of these functions allows simple closed form
solutions, but some evaluation techniques are nevertheless
available �17,18,26–28�. We have chosen the approach pro-
posed by Rimon and Boyd �RB� �29,30� which was used for
an obstacle collision detection procedure for robots, where
short computational times are essential. The RB technique
allows two key benefits: �1� A quick estimation procedure of
the distance between two ellipsoids that uses standard com-
putation routines and that can be made sufficiently precise;
�2� an overlap criterion between two ellipsoids as an inter-
mediate result for the interdistance computation, which can
be calculated in about half the time needed for the complete
calculation. The computation is based on a formula for the
distance of a point from an ellipsoid which reduces the prob-
lem to the calculation of the minimal eigenvalue of an aux-
iliary matrix constructed from the geometrical data. Details
are given in Appendix A.

We are now going to briefly outline how the distribution
generation algorithm is constructed. First, a spheroid distri-
bution is created inside a cubic cell of volume L3 by random
sequential addition: for every new particle, random placing is
attempted and accepted as valid only if there is no overlap
with any neighboring particle. The spheroid angles are gen-
erated so as to assure an isotropic distribution of orientations
�7,17�. To speed up the search for neighbors the main cubic
cell is subdivided into discrete binning cells of size compa-
rable to the major dimension of the spheroids. When check-
ing for overlap, simple geometrical rejection criteria which
can identify an inevitable overlap are used as a filter to avoid
unnecessary computations of the �time-consuming� RB over-
lap function. Geometrical criteria to identify neighbors that
are distant enough as not to be able to lead to an overlap in
any case are also used, again to avoid unnecessary computa-
tions of the RB function. Periodic boundary conditions are
imposed on the main cell. Second, the interparticle distance
is computed. An interaction interdistance �equivalent to
twice the penetrable shell thickness� is chosen so that sphe-
roids separated by a distance greater than this are considered
as noninteracting. Again, the same neighbor search proce-
dure is used and, if necessary, the distance computation is
performed. To do this in an efficient way, a first RB calcula-
tion is executed. If the resulting distance estimate is clearly
beyond the interaction range �even when the worst possible
error is considered� the calculation is stopped. Otherwise, the
computation is continued by performing the RB calculation
with inverted spheroids, comparing the outcome with the
first calculation, and retaining the shorter of the two. Finally,
a part of the RB computation is reiterated to obtain a further
correction. When the results are compared with those of a
more accurate but much slower distance evaluation routine,
this procedure leads to a distance estimate that has an aver-
age error of about +1% on a wide range of ratios of distance
to major spheroid dimension �from 10−4 to 10�. Figure 1
shows one of such distributions as it appears when the algo-
rithm output file is loaded in a viewer.

Once the desired distribution has been created and the
neighboring-particle interdistances computed, the distribu-

tion algorithm output data are fed into the part of a program
which isolates the connected cluster using a modified version
of the Hoshen-Kopelman algorithm �31–33�. Finally, it is
verified whether the connected cluster spans two specific op-
posite sides of the simulation cell.

III. SIMULATION RESULTS

To explore the percolative properties of hard oblate sphe-
roids surrounded with a penetrable shell of constant thick-
ness, we considered spheroids with an aspect ratio, i.e., ratio
of spheroid major axis a to minor �symmetry� axis b, a /b,
between 1 �spheres� and 100. The ratio of shell thickness d to
spheroid major axis, d /a, was chosen to vary between 0.05
and 4.0. The thinnest shell limit is bound to the maximum
volume fraction which can be achieved through random se-
quential addition �34� for the a /b=1 �spheres� case. Close to
this limit, computation times grow enormously since it be-
comes increasingly difficult to find available space to place
new particles �34�. For the lowest investigated shell thick-
ness each aspect-ratio case needed several weeks of comput-
ing time on a modern dual-core machine.

To extrapolate the percolation threshold from the simula-
tion algorithm, we followed finite-size scaling arguments as
described in Ref. �35� and briefly outlined below. For a given
size L of the cube, we obtained the spanning probability as a
function of the spheroid volume fraction by recording the
number of times a percolating cluster appeared over a given
number of realizations. The resulting spanning probabilities
were then plotted against the volume fraction and fitted with
the sigmoidal function

f =
1

2
�1 + tanh�� − �c

eff

�
�� , �1�

where �c
eff is the percolation threshold for a given value of L

and corresponds to the hard-particle volume fraction at
which the spanning probability is equal to 1 /2, while � rep-
resents the width of the percolation transition. Both �c

eff and
� depend on the size L of the system and, by following the
scaling arguments of �35�, allow us to deduce the percolation

FIG. 1. �Color online� Distribution of 3000 spheroids with as-
pect ratio a /b=10.
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threshold �c for the infinite system through the following
scaling relations:

��L� � L−1/�, �2�

�c
eff�L� − �c � L−1/�, �3�

where � is the correlation length exponent. By repeating the
simulation procedure for different cell sizes it is possible, via
the percolation transition widths � and the inversion of Eq.
�2�, to extract � and consequently, from Eq. �3�, the percola-
tion threshold �c for L=�. We choose to simulate ten differ-
ent cell sizes, L=10, 13, 15, 17, 20, 23, 25, 27, 30, and 35
times the major spheroid dimension, i.e., twice the major
axis a. For thick shells �d /a�1.0� the cell sizes were in-
creased further. The spheroid number was on the order of
thousands for the smallest cells up to about 70 000 for the
largest. The number of realizations per volume fraction step
varied from 50 for the smallest shell thickness up to 400 for
the thicker ones. Higher realization numbers did not show
appreciable improvements �36�. In all cases, the correlation
length exponent � had a value around 0.9, in good agreement
with previous results on spheres �2,31,35�. However, some-
times the fluctuations of �c

eff were too large and a simple
average of the results provided a more significant result than
the one obtained from the finite-size analysis.

In Fig. 2 we report the obtained spanning probability as a
function of � for a /b=1 and a /b=2 and for selected values
of the cell size L. The shell thickness d to major axis ratio
was set equal to d /a=0.1111. From the figure it is clear that
increase in the aspect ratio from a /b=1 �spheres� to 2 leads
to a lowering of the percolating volume fraction. This trend
is confirmed in Fig. 3, where the critical hard-particle vol-
ume fraction �c is plotted as a function of a /b and for sev-
eral values of the penetrable shell thickness. For the thinnest
shells we find that �c can be reduced by about one order of
magnitude in going from a /b=1 up to a /b=100. This result

is fully consistent with the frequently reported trend that as-
semblies of oblate objects with high aspect ratios entail a
lower percolation threshold. For example, several studies of
graphite-polymer composites reported a consistent lowering
of the electrical conductivity percolation threshold when
very high-aspect-ratio graphite nanosheets �13,37,38� or
graphene flakes �39� were used. We also note that for the
a /b=1 �spheres� case there is full agreement between our �c
and those of the literature �1,2,31�.

In addition to �c, another quantity characterizing the per-
colation threshold is the reduced critical density �c defined
as

�c = �cVd = �c
Vd

V
, �4�

where �c is the number density at percolation and Vd is the
total object volume, comprising the volume of the hard
spheroid, V, plus that of the penetrable shell. Vd is explicitly
calculated in Appendix B; see Eq. �B25�. The behavior of �c,
plotted in Fig. 4 as a function of the penetrable shell thick-
ness d /a and for several aspect ratios, accounts for the de-
pendence of the percolation threshold on the geometry of the
total object �hard core plus penetrable shell�. Indeed, for
d /a=4 the reduced critical density is almost independent of
the aspect ratio a /b while, for thinner penetrable shells, �c
acquires a stronger dependence on a /b. This is due to the
fact that, for large d /a values, the form of the total object
does not deviate much from that of a sphere, so that �c
	0.34 as for fully penetrable spheres. On the contrary, for
smaller values of d /a, the geometry of the total object is
more similar to that of an oblate ellipsoid, with a conse-
quently stronger dependence of �c on the aspect ratio.

IV. QUASI-INVARIANTS AT THE PERCOLATION
THRESHOLD

In continuum percolation, an important quantity providing
information on the local topology of the percolating cluster is

FIG. 2. �Color online� Percolation width variation with the in-
crease of the simulation cell size for the aspect ratios 1 and 2.
d /a=0.1111.

FIG. 3. �Color online� Percolation threshold �c variation as a
function of the aspect ratio for different shell thicknesses.
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the average number Bc of objects connected to a given par-
ticle. For fully penetrable objects, and since in this case there
is no spatial correlation, Bc is simply given by �10�

Bc = �cVex, �5�

where Vex is the excluded volume defined by the volume
around an object where the center of another object cannot
penetrate if overlap is to be avoided. For penetrable spheres
each of volume V, the excluded volume is Vex=8V and, by
using �c=�c /V with �c	0.34, the resulting connectivity
number is Bc	2.74, which agrees well with the evaluation
of Bc from a direct enumeration of connections in assemblies
of penetrable spheres at percolation �1,4�. Indeed, for fully
penetrable spheres, for which the sphere centers are distrib-
uted randomly, Eq. �5� simply states that Bc is equivalent to
the average number of centers found within an excluded vol-
ume, irrespective of the spatial configuration of the percolat-
ing objects. However, for semipenetrable spheres, the pres-
ence of a hard core introduces a spatial correlation �see
below� so that Bc is expected to deviate from the uncorre-
lated case of Eq. �5�. In particular, Bc is found to decrease as
the hard-core portion of the sphere increases, reaching Bc
	1.5 for very thin penetrable shells �1,4�, as a result of the
repulsion of the impenetrable hard cores.

Let us now consider the case of assemblies of oblate el-
lipsoids. In Fig. 5 we plot the computed values of Bc as a
function of the penetrable shell thickness d /a and for se-
lected values of the aspect ratio a /b. Results of Ref. �1�,
which extend to shell thicknesses below d /a	0.05 because
of a different distribution generation procedure than random
sequential addition, are also plotted for comparison. For
a /b=1 we recover the results for the spheres: Bc	2.7 for
large values of d /a while Bc	1.5 for d /a=0.0526. For
a /b	1 and thick penetrable shells, Bc remains close to the
spherical case also for larger aspect ratios because, as said
before, for large d /a values the entire object �hard core plus
penetrable shell� is basically a semipenetrable sphere with a
small hard-core spheroid. However, by decreasing d /a, we

find that Bc continues to remain very close to the a /b=1 case
also for the thinnest penetrable shells, irrespective of the as-
pect ratio. This is well illustrated by the inset of Fig. 5,
where the calculated Bc for d /a=0.0526 does not show ap-
preciable variations over a two-order-of-magnitude change
of a /b. This result is rather interesting in view of the fact that
the quasi-invariance of Bc with respect to the aspect ratio in
oblate spheroids is in striking contrast to what is found by
numerical evaluation for prolate hard objects such as sphero-
cylinders �4,21�. For example, for spherocylinders made of
hard cylinders of length H and diameter D capped by hemi-
spheres and with penetrable shells of thickness 0.1D, Bc is
found to decrease from Bc=1.61 for H /D=4 down to Bc
=1.29 at H /D=25 �21�, consistently deviating therefore from
Bc	1.76, obtained for spheres of diameter D and the same
penetrable shell thickness �1�. Different behaviors of quasi-
impenetrable oblate and prolate objects noted here are also
found in the fully penetrable case. Indeed, Bc of prolate ob-
jects decreases as the aspect ratio is increased, and is ex-
pected to approach unity in the extreme prolate limit as a
consequence of the vanishing critical density �8�, while Bc of
oblate objects remains close to Bc	3 all the way from the
moderate to the extreme oblate regimes �18�.

Now we can write a general relation between the average
connection number Bc at percolation and the critical number
density �c. If we consider hard spheroids with penetrable
shell and with an isotropic distribution of orientations, then
Bc reduces to

Bc = �c

0

2


d�

0




d� 
��,��

Vexd��,��

d3r g�r,�,�� , �6�

where � and � are the angles between the major axes of two
spheroids separated by r and g�r ,� ,�� is the radial distribu-
tion function: given a particle centered in the origin,
�cg�r ,� ,�� represents the mean particle number density at
position r with a orientation � ,�. The integration over r is

FIG. 4. �Color online� �c as a function of the shell thickness for
different aspect ratios.

FIG. 5. �Color online� Bc as a function of the shell thickness
from simulation for different aspect ratios. The results are obtained
from the simulations by counting the connection number of each
spheroid with its neighbors and averaging.

AMBROSETTI et al. PHYSICAL REVIEW E 78, 061126 �2008�

061126-4



performed over the total excluded volume Vexd�� ,�� �hard
core plus penetrable shell� centered at the origin and having
orientation � ,�.

We observe that all the information about the presence of
a hard core inside the particles is included in the radial dis-
tribution function, which will be zero in the volume occupied
by the hard core of the particle centered at the origin. How-
ever, g�r ,� ,�� is a rather complex function and even for the
case of spheres there are only approximate theoretical ex-
pressions �40�. Also, the construction of a fitted expression to
simulation data may turn out to be excessively complicated
when the respective orientation of the particles has to be
taken into account.

The lowest-order approximation that we may then con-
sider, and which is exact in the case of fully penetrable par-
ticles, is the one where g�r ,� ,��=1. This is equivalent to
neglecting all contributions of the radial distribution function
which come from the presence of the hard core. The result-

ing quantity, which we denote by B̄c, is then given by

B̄c = �c

0

2


d�

0




d� 
��,��

Vexd��,��

dr = �c�Vexd� , �7�

where �Vexd� is the orientation-averaged total excluded vol-
ume. Given the averaged excluded volume of spheroids sur-
rounded with a shell of constant thickness �Vexd� �B29�, to-
gether with the hard spheroid excluded volume expression

�B28� or �B30�, we can calculate B̄c from the percolation
threshold results obtained from the simulations:

B̄c = �c�Vexd� = �c
�Vexd�

V
, �8�

where we have used the hard-core volume fraction �c. The
full details of the calculation of the excluded volume quan-

tities can be found in Appendix B. The resulting values of B̄c
are plotted in Fig. 6 as a function of the penetrable shell

thickness and for several aspect ratios. B̄c, which can be
interpreted as the average number of particle centers per av-
eraged excluded volume, is a different quantity from Bc and
a correspondence between the two appears only in the thick
shell limit, where the system is more similar to a fully pen-
etrable one. This can be appreciated by comparing Fig. 6

with Fig. 5. The increasing discrepancy for thinner shells is
due to stronger correlation effects stemming from the pres-

ence of the hard core. Nevertheless, the behavior of B̄c is still

rather intriguing. Indeed, the dependence of B̄c on the pen-
etrable shell thickness d /a appears to be universal with re-
spect to the aspect ratio, for all d /a values larger than d /a

	0.1. Furthermore, in this region of d /a, B̄c has a rather
weak dependence on the shell thickness, not deviating much

from B̄c	2.8.

The quasi-invariance of B̄c may be a result of practical
utility since, by using Eq. �8�, the percolation threshold �c

can be estimated from �Vexd� and B̄c	2.8, in a wide interval
of d /a and aspect-ratio values. The direct determination of
the percolation threshold of hard oblate spheroids via simu-
lations is a time-consuming procedure. Thus, a relation
which allows us to quickly evaluate such a quantity as a
function of the dispersion geometric parameters offers some
advantage.

V. CONCLUSIONS

The geometrical percolation threshold in the continuum of
random distributions of oblate hard ellipsoids of revolution
surrounded with a soft shell of constant thickness has been
investigated. Simulation results spanning a broad range of
aspect ratios �from a /b=1 to 100� and shell thickness �from
d /a	0.05 to d /a=4� values have been reported. It is found
that larger aspect ratios entail lower percolation thresholds,
in agreement with the behavior observed experimentally in
insulator-conductor composites where the conducting phase
is constituted by oblate objects, such as graphite nanosheets.
For the thinnest investigated shell �d /a	0.05�, the percola-
tion threshold of the aspect-ratio-100 platelike objects was
more than 26 times lower than the one of spheres. Further-
more, the average number Bc of connected objects at perco-
lation is a quasi-invariant with respect to the aspect ratio, in
contrast with what has been previously reported for prolate
objects. Indeed, for all the considered aspect ratios a behav-
ior of Bc was found that is almost identical to that obtained
for spheres. Finally, we have identified an additional quasi-

invariant of the investigated system, B̄c, which is based on
the excluded volume concept and which allows us to quickly
infer the system percolation threshold. For all penetrable

shells thicker than d /a=0.1, B̄c shows almost no aspect-ratio

dependence and remains close to B̄c	2.8.
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APPENDIX A: GENERALIZED DISTANCE BETWEEN
ELLIPSOIDS AND OVERLAP CRITERION

We outline in this appendix the mathematical details of
the ellipsoid interdistance evaluation procedure and overlap
criterion as introduced by Rimon and Boyd �29,30�. Given
two ellipsoids �A and �B identified by their 3�3 form ma-

trices Â and B̂ and centered at cA and cB, respectively,

�x − cA�TÂ�x − cA� = 0, �A, �A1�

�x − cB�TB̂�x − cB� = 0, �B, �A2�

we have that the minimal distance d between the ellipsoids
can be estimated as

d��A,�B� = 
x* − y*
 , �A3�

where

x* = cA + �Â−1/2��I3�3 − �Â−1/2B̂Â−1/2�−1�−1Â1/2�cB − cA�
�A4�

and � is the minimal eigenvalue of the 6�6 matrix

� �Â−1/2B̂Â−1/2�−1 − I3�3

− ��Â−1/2B̂Â−1/2�−1/2Â1/2�cB − cA����Â−1/2B̂Â−1/2�−1/2Â1/2�cB − cA��T �Â−1/2B̂Â−1/2�−1
� , �A5�

while

y* = x* + ���I3x3 − Â−1��cA − x*� �A6�

and � is the minimal eigenvalue of the 6�6 matrix,

� Â−1 − I3�3

− �Â−1/2�cA − x*���Â−1/2�cA − x*��T Â−1
� . �A7�

I3�3 is naturally the 3�3 identity matrix.
The overlap criterion comes from x* alone. If we con-

struct the quantity

m��A,�B� � �x* − cA�TÂ�x* − cA� − 1, �A8�

we will have that

m � 0, �A,�B overlap,

m = 0, �A,�B touch,

m 	 0 otherwise. �A9�

The algorithm implementation followed then the route out-
lined by RB �29,30� although in the present case we have
used FORTRAN 90 instead of C as programming language.

APPENDIX B: EVALUATION OF EXCLUDED VOLUME
QUANTITIES

We report in the following the derivation of the excluded
volume of two oblate spheroids, the excluded volume of two
oblate spheroids surrounded with a shell of constant thick-
ness, and their angular averages. We follow a route due to the
pioneering work of Isihara �41� which is somewhat more
laborious than the one used by the same author �42� and the
authors of �43� to derive the widely used Isihara-Ogston-
Winzor spheroid excluded volume formula. The advantage is

that it is possible to obtain, albeit in a series expansion form,
the excluded quantities with their full angle dependence. The
average over the spheroid angle distribution function is per-
formed successively and can be easily extended to noniso-
tropic cases. Let us consider the case of two identical sphe-
roids of major axis a and minor axis b in contact, as
illustrated in Fig. 7.

The geometrical quantities H and K, which represent the
distances from the spheroid centers to the tangent plane to
the two spheroids in the contact point, may be written as

H��� = a�1 − �2 cos2 � , �B1�

K���� = a�1 − �2 cos2 ��, �B2�

where � represents the eccentricity �for oblate spheroids�

FIG. 7. Two identical oblate spheroids in contact �2D
representation�.
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� ��1 −
b2

a2 . �B3�

Furthermore, we have

cos2 �� = �sin � sin ��cos � cos � + sin � sin ��

+ cos � cos ��2

= �sin � sin � cos�� − �� + cos � cos ��2, �B4�

where � and � are the angles which define the rotation that
transforms the symmetry axis vector b of spheroid A into
that of B ,b�.

We can then write the excluded volume of two identical
spheroids, or more generally two identical ovaloids, as
�41,42�

Vex = 2V +
 K�H,H�d� = 2V + 

0

2


d�

0




d� sin �K�H,H� ,

�B5�

where d� is the infinitesimal surface element of the unit
sphere centered at the origin which, by using the reference
frame choice of Fig. 7, takes the form

d� = sin � d� d� . �B6�

Furthermore, in Eq. �B5� we have introduced the differential
operator on the unit sphere which for two equal scalar quan-
tities F takes the form

�F,F� � 2�� �2F

��2 + F�� 1

sin2 �

�2F

��2 +
cos �

sin �

�F

��
+ F�

− � �

��
� 1

sin �

�F

��
��2� , �B7�

while V is the volume of the spheroid.
With the explicit form of H, Eq. �B1�, K, Eq. �B2�, and

relation �B4�, we can write for the excluded volume �B5� in
the case of the two spheroids the integral form

Vex��,�� = 2V + 2a3�1 − �2��
0

2�

d��
0

�

d� sin �
�1 − �2 cos2 ��

�1 − �2 cos2 ��2

= 2V + 2a3�1 − �2��
0

2�

d��
0

�

d� sin �
�1 − �2�sin � sin � cos � + cos � cos ��2

�1 − �2 cos2 ��2

I

,

�B8�

where we have used the fact that



0

2


d��1 − �2�sin � sin � cos�� − �� + cos � cos ��2

= 

0

2


d��1 − �2�sin � sin � cos � + cos � cos ��2,

�B9�

because of the 2
 periodicity of the integrand, which means
that Vex is � independent.

We now may expand the 1−�2�sin � sin � cos �
+cos � cos ��2 square root:

�1 − �2�sin � sin � cos � + cos � cos ��2

= 1 −
1

2�

�
k=1

�

��k −
1

2
� �2k

k!

��sin � sin � cos � + cos � cos ��2k

= 1 −
1

2�

�
k=1

�

��k −
1

2
� �2k

k! �
i=0

k �k

i
�

��sin � sin � cos ��2i�cos � cos ��2k−2i.

�B10�

Substituting this in integral I of �B8� and integrating over �
in the first resulting term, we obtain

I = 2


0




d�
sin �

�1 − �2 cos2 ��2 −
1

2�

�
k=1

�

��k −
1

2
�

�
�2k

k! �
i=0

k �k

i
�sin2i� cos2k−2i �


0

2


d� cos2i �

�

0




d�
sin2i+1 � cos2k−2i �

�1 − �2 cos2 ��2 . �B11�

The integration follows then with the aid of formulas 2.153
�3�, 3.682, and 3.681 �1� of Ref. �44�, obtaining with �B8� the
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expression for the excluded volume of two identical oblate
spheroids:

Vex��� = 2V + 2a3�1 − �2��4
F�2,1/2,3/2,�2�

− �
�
k=1

�

��k −
1

2
��2k�

i=0

k
sin2i � cos2k−2i �

2i�k − i�!�i!�2

�B�i + 1,
2k − 2i + 1

2
�

�F�2,
2k − 2i + 1

2
,
2k + 3

2
,�2�� . �B12�

Here, B is the beta function and F is the hypergeometric
function. Let us now consider the situation depicted in Fig. 8
which represents two �identical� spheroids surrounded with a
shell of constant thickness d. We are again interested in
evaluating the excluded volume of these objects which, be-
cause of the constant shell offset, will no longer be ellip-
soids. Nevertheless, we see that in this case we can again
construct geometrical quantities like H and K of the two
spheroids of Fig. 7 and that these, which we will call H� and
K�, are parallel to the old H and K, respectively. Then it
follows that

H���� = H��� + d , �B13�

K����� = K���� + d , �B14�

and H and K will be given by �B1� and �B2�. Now, in this
case also expression �B5� holds true and, observing that the
volume of an ovaloid may be written as �41,42�

V =
1

6

 G�G,G�d� , �B15�

where G is a geometric quantity constructed like
H ,K ,H� ,K�, we are able to write for the excluded volume of
the two spheroids with shell

Vexd = 2V� +� K��H�,H��d� = Vex +
4d

3
� �H,H�d�

I1

+ 2d� �H

3
+

4d

3
�� �2H

��2 +
cos �

sin �

�H

��
+ 2H + d�d�

I2

+ 2d� K� �2H

��2 +
cos �

sin �

�H

��
+ 2H + d�d� ,

I3 �B16�

and Vex is the excluded volume of the two spheroids �B12�.
Integrals I1 and I2 are straightforward and may be solved

with the aid of formulas 3.682, 2.583 �3�, 2.584 �3�, and
2.584 �39� of �44�:

I1 = 2a2�1 − �2�

0

2


d�

0




d�
sin �

�1 − �2 cos2 ��2

= 8
a2�1 − �2�F�2,1/2,3/2,�2� , �B17�

I2 = 

0

2


d�

0




d� sin ��a�1 − �2 cos2 �

3
+

4d

3
�

�� a
�1 − �2 cos2 �

+
a�1 − �2�

�1 − �2 cos2 ��3/2 + d�
=

4


3
�a2 + 4d2� + 6
ad��1 − �2 +

arcsin �

�
�

+
4


3
a2�1 − �2�

arctanh �

�
. �B18�

Regarding I3 we have, using Eqs. �B2�, �B4�, and �B9�,

I3 = a

0

2


d�

0




d� sin �

��1 − �2�sin � sin � cos � + cos � cos ��2

�� a
�1 − �2 cos2 �

+
a�1 − �2�

�1 − �2 cos2 ��3/2 + d� ,

�B19�

and we can again expand the 1−�2�sin � sin � cos �
+cos � cos ��2 square root, obtaining

I3 = a

0

2


d�

0




d� sin �� a
�1 − �2 cos2 �

+
a�1 − �2�

�1 − �2 cos2 ��3/2 + d� −
a

2�


��
k=1

�

��k −
1

2
� �2k

k! �
i=0

k �k

i
�sin2i � cos2k−2i �

�

0

2


d� cos2i ��a

0




d�
sin2i+1 � cos2k−2i �

�1 − �2 cos2 �

FIG. 8. Two oblate spheroids surrounded with shells of constant
thickness which are in contact �2D representation�.
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+ a�1 − �2�

0




d�
sin2i+1 � cos2k−2i �

�1 − �2 cos2 ��3/2

+ d

0




d� sin2i+1 � cos2k−2i �� . �B20�

These integrals may be solved again with the use of the
formulas 2.153 �3�, 3.682, 3.681 �1�, 2.583 �3�, 2.584 �39�,
and 3.621 �5� of �44�, yielding

I3 = 4
a�a arcsin �

�
+ a�1 − �2 + 2d�

− a�
�
k=1

�

��k −
1

2
��2k�

i=0

k
sin2i � cos2k−2i �

2i�k − i�!�i!�2

�B�i + 1,
2k − 2i + 1

2
��aF�1

2
,
2k − 2i + 1

2
,
2k + 3

2
,�2�

+ a�1 − �2�F�3

2
,
2k − 2i + 1

2
,
2k + 3

2
,�2� + d� . �B21�

We can then combine all these results together with the prop-
erty �45�

F�2,
1

2
,
3

2
,�2� =

1

2
� 1

1 − �2 +
arctanh �

�
� �B22�

and Eq. �B16� to write the excluded volume of two oblate
spheroids surrounded by a shell of constant thickness Vexd:

Vexd = Vex +
8


3
d�3a2 + 4d2 + 3ad� + 4
ad�2a + 3d�

���1 − �2 +
arcsin �

�
� + 8
a2d�1 − �2�

arctanh �

�

− 2ad�
�
k=1

�

��k −
1

2
��2k�

i=0

k
sin2i � cos2k−2i �

2i�k − i�!�i!�2

�B�i + 1,
2k − 2i + 1

2
��aF�1

2
,
2k − 2i + 1

2
,
2k + 3

2
,�2�

+ a�1 − �2�F�3

2
,
2k − 2i + 1

2
,
2k + 3

2
,�2� + d� . �B23�

We note that the above procedure allowed us to obtain an
expression for Vexd with an angular dependence only upon �.
However, the orientation of the surface enclosing this vol-
ume will be dependent also on �, which is why it is needed,
e.g., in �6�.

The above results can also be easily used to compute the
total volume of the spheroid with the shell starting from Eq.
�B15� with Eq. �B13�:

Vd = V +
d

6

 �H,H�d� +

d

3

�
 �H + d�� �2H

��2 +
cos �

sin �

�H

��
+ 2H + d�d� ,

�B24�

which is very similar to the first part of Eq. �B16� and can be
integrated in the same way, obtaining

Vd = V +
2
d

3
�3a2�1 − �2�

arctanh �

�

+ 3ad��1 − �2 +
arcsin �

�
� + 3a2 + 2d2� . �B25�

We now want to calculate the averaged excluded volume
starting from the angle distribution functions which arise in
the spheroid distributions of the simulation algorithm. For
axially symmetric objects the angle distribution function

��� is dependent only on the angle between the symmetry
axes, �. In the case of an isotropic �or Poissonian� angle
distribution, where any orientation is equally probable, it is
easy to find


isotr��� =
sin �

4

. �B26�

To verify that this situation occurs without bias in the simu-
lations, we used a modified version of the spheroid distribu-
tion creation algorithm: after the distribution was realized,
for every spheroid it was searched for neighbors which lay
within a certain radius from its center and the angles between
their symmetry axis were recorded. We then fitted the func-
tion to the simulated angle distribution results and, although
we may expect that this distribution function will deviate
from the purely isotropic case when highly packed assem-
blies are realized due to local orientation, we obtained no
deviation for all binning radii and all volume fractions con-
sidered in the present research. The averaged excluded vol-
ume of the two spheroids will then be

�Vex�isotr = 

0

2


d�

0




d�
isotr���Vex���

=
1

2



0




d� sin � Vex��� . �B27�

This easily leads with �B12� and 3.621 �5� of �44� to the
averaged excluded volume of two oblate spheroids:

�Vex� = 2V + 8
a3�1 − �2�F�2,1/2,3/2,�2� − �
a3�1 − �2�

��
k=1

�

��k −
1

2
��2k�

i=0

k �B�i + 1,
2k − 2i + 1

2
��2

2i�k − i�!�i!�2

�F�2,
2k − 2i + 1

2
,
2k + 3

2
,�2� , �B28�

and with Eq. �B23� and the same formula of �44� to the
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averaged excluded volume of two oblate spheroids sur-
rounded a shell of constant thickness:

�Vexd� = �Vex� +
8


3
d�3a2 + 4d2 + 3ad� + 4
ad�2a + 3d�

���1 − �2 +
arcsin �

�
� + 8
a2d�1 − �2�

arctanh �

�

− ad�
�
k=1

�

��k −
1

2
��2k�

i=0

k �B�i + 1,
2k − 2i + 1

2
��2

2i�k − i�!�i!�2

� �aF�1

2
,
2k − 2i + 1

2
,
2k + 3

2
,�2� + a�1

− �2�F�3

2
,
2k − 2i + 1

2
,
2k + 3

2
,�2� + d� . �B29�

The quantities involved in Eqs. �B28� and �B29� can then be
easily evaluated with mathematical software like MAPLE

�45�.
The averaged excluded volume of the hard spheroids

�B28� is of course equivalent to the Isihara-Ogston-Winzor
expression �42,43�

�Vex�IOW =
4

3

a2b�2 +

3

2�1 +
arcsin �

��1 − �2�
��1 +

�1 − �2�
2�

ln�1 + �

1 − �
��� . �B30�

These expressions were then successfully verified through
simulation by generating a great number of randomly placed
spheroid couples with fixed reciprocal orientation and seeing

how many times their shells overlapped. The ratio of over-
laps to the total trial number is then equal to the ratio of the
excluded volume to the volume of the simulation cell. As an
example, we may consider the plot of such a comparison for
�Vexd� �B29� for the d /a=0.1765 and a=0.5 case, as shown
in Fig. 9. Convergence tests on the series were also per-
formed.

It is finally interesting to observe that the ratio between
�Vexd� and the spheroid volume V is roughly linearly depen-
dent upon the spheroid aspect ratio and that it slightly devi-
ates from this behavior only close to the sphere case. The
same holds true for the averaged excluded volume �Vex�,
showing that interpretion of the influence of the spheroid
aspect ratio as an excluded volume effect is a consistent ap-
proach.
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